The (almost really) Complete Works of Lewis Carroll

Formulæ (Group C)

Source: cyclostyled 1878?

N.B. The pupil need not commit to memory the formulæ marked thus “[”; but he should be able to work them out readily.

Formula connecting E, FE:F::9:10
Formula connecting E, ΘE:Θ::180:π
Approximative values of π227, 355133, 3⋅14159&c.
Reciprocal ratiossin, cosec; cos, sec; tan, cot
Formula connecting sin, cossin2+cos2=1
tan, sin, costan=sincos
sec, tansec2=tan2+1
Sin, cos, tan, of 0, 1, 0
90°1, 0, 10
180°0, −1, 0
[270°−1, 0, 10
45°12, 12, 1
60°32, 12, 3
30°12, 32, 13
Sin(A+B) sinA.cosB+cosA.sinB
(AB)
Cos(A+B) cosA.cosBsinA.sinB
(AB)+
Tan(A+B) tanA+tanB1tanA.tanB
(AB)tanAtanB1+tanA.tanB
Sin2A2.sinA.cosA
Cos2A
in terms of cos, sincos2Asin2A
of cos only2cos2A1
of sin only12sin2A
Tan2A2tanA1tan2A
[CosA2, in terms of cosA1+cosA2
[SinA2, 1cosA2
Tan1t1+tan1t2tan1t1+t21t1t2
” − ”tan1t1t21+t1t2
[Hence 2tan1ttan12t1t2
SinA+sinB2sinA+B2.cosAB2
” − ”2cosA+B2.sinAB2
CosA+cosB2cosA+B2.cosAB2
” − ”2sinA+B2.sinAB2

Triangles

Formulæ of sinessinAa=sinBb=sinCc
sidescosA=b2+c2a22bc
tangentstanBC2=bcb+c.cotA2
CosA2, in terms of sidess.(sa)bc
sinA2, (sb).(sc)bc
tanA2, (sb).(sc)s.(sa)
[sinA, 2bcs.(sa).(sb).(sc)
a, in terms of b, c, B, Cb.cosC+c.cosB
Area, in terms of two sides and included anglebc2.sinA
in terms of sidess.(sa).(sb).(sc)
If Area be denoted by ‘M,’ and radii of inscribed, circumscribed, and escribed circles by ‘r, R, Ra, Rb, Rc;
r Ms
R abc4M
[Ra, &c.Msa, &c.

Polygons. (n sides)

[Each angle180°360°n
[Formula connecting r, aa2r=tan180°n
[ R, aa2R=sin180°n
[Area, in terms of sidesna24.cot180°n
[ of r nr2.tan180°n
[ of R nR22.sin360°n

Logarithms

If base be denoted by ‘a’;
loga1
log10
logmnlogm+logn
logmnlogmlogn
logmnn.logm
logmnlogmn